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1. Introduction

Neutrino oscillation experiments have confirmed that neutrinos are massive and lepton

mixing is observable. This result, which is the most important recent experimental result

in particle physics, has brought a new level of confusion and excitement to the already

puzzling area of flavor physics. Although the triumph of the Standard Model (and its

extension to grand unified theories) suggests a unified view of the quarks and leptons in

terms of the gauge interactions, quarks and leptons display striking differences in terms of

their masses and mixings.

In the quark sector, the Cabibbo-Kobayashi-Maskawa mixing matrix is approximately

the identity matrix, and the masses are equally spaced on the logarithmic scale. Parame-

trized in terms of the Cabibbo angle λc ≡ sin θc = 0.22 (θc ' 13◦), the quark mass ratios

are
mu

mt
∼ λ8

c ,
mc

mt
∼ λ4

c ;
md

mb
∼ λ4

c ,
ms

mb
∼ λ2

c . (1.1)

As a result, perturbing about the limit of vanishing Cabibbo angle is a popular approach

to understanding the flavor problem.

In the lepton sector, the situation is quite different. The Maki-Nakagawa-Sakata-

Pontecorvo (MNSP) [1] lepton mixing matrix is experimentally known [2 – 4] to be of the

form (neglecting phases):

UMNSP ≈ R1(θ⊕)R3(θ¯), (1.2)

in which Ra(θ) denotes a rotation matrix about the a-axis. The atmospheric and solar

mixing angles are large:

θ⊕ ≈ 45◦ ± 10◦, θ¯ ≈ 34◦ ± 2◦ . (1.3)

Equally puzzling is the fact that oscillations are predominantly among two neutrinos; the

third mixing angle θ13 is bounded to be at most of Cabibbo size [4]. Turning now to lepton

masses, the charged lepton masses display hierarchies

me

mτ
∼ λ5

c ,
mµ

mτ
∼ λ2

c , (1.4)
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but the same is not obvious for the neutrinos. Oscillation data has indicated that the ratio

of the observed solar and atmospheric mass-squared differences can be expressed in terms

of λc as follows:
∆m2

¯

∆m2
⊕

' 8 × 10−5 eV2

2 × 10−3 eV2 ∼ λ2
c . (1.5)

Assuming only three active neutrinos oscillate, with masses m1,2,3, there are several possible

neutrino mass patterns, all of which display milder hierarchies than those of the charged

fermions:

• Normal hierarchy (m1 < m2 ¿ m3):

m1

m3
∼

√

(

m2

m3

)2

− λ2
c ,

m2

m3
∼ λc, (1.6)

• Inverted hierarchy (m3 ¿ m1 ∼ m2):

m1

m2
∼ 1 + λ2

c ,
m2

m3

<
∼ λc. (1.7)

• Quasi-degenerate (m1 ∼ m2 ∼ m3):

m1

m3
∼ m2

m3
∼ 1 + λc,

m1

m2
∼ 1 + λ3

c . (1.8)

The data have challenged us to understand the origin of the observed discrepancies between

the quark and lepton sectors. This question is particularly intriguing within the context of

quark-lepton unification [5], for which all available data can be synthesized in the search

for a compelling flavor theory. The lepton data has led to a recent renaissance in flavor

model building, with many examples in the literature (see the reviews [6] and references

therein).

The first step in addressing the flavor puzzle is to seek a reasonable theoretical starting

point for building flavor theories. To this end, quark-lepton unification compels us to

consider the effects of small (e.g. Cabibbo sized) perturbations in the lepton sector. For

the mixings, θ13 is akin to quark angles (deviation from zero), while for the solar and

atmospheric mixings, small parameters would appear as deviations from large initial values.

The measured angles are thus “hazed” away from starting values which assume values

indicative of flavor symmetries [7 – 9] (in other approaches θ⊕ and θ¯ take their central

experimental values as indicative of discrete flavor symmetries [10]).1 Small parameters

may govern a subset of the neutrino masses or their deviations from a common mass.

However, given the large lepton mixings, a natural theoretical starting point is neutrino

mass degeneracy, since large angles can arise from small perturbations about degenerate

structures.

1Alternatively, one can give up the study of flavor physics, appeal to some landscape, or like number

theorists of old, ascribe magical meanings to the central values of the angles (our favorite is the Phidian

angle (golden mean) π/5 ≈ 36◦).
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In that spirit, we investigate the implications of the family symmetries which emerge

by requiring a theoretical starting point where in the limit of exact symmetry, the Dirac

(∆Iw = 1/2) and Majorana (∆Iw = 0) mass matrices yield hierarchical masses for the

charged fermions and degenerate masses for both the light neutrinos obtained from the

seesaw mechanism [11] and the heavy right-handed neutrinos. These requirements lead to

specific constraints on the ∆Iw = 1/2 sector which suggest features of the family sym-

metry. Note that the path to neutrino mass degeneracy differs here from that most often

found in the literature (e.g. in single right-handed neutrino dominance models [12]), in

which hierarchical right-handed neutrino masses offset the hierarchical Dirac masses. In

its simplest implementation, an SO(2) family symmetry results from these requirements.

Large lepton mixing angles then arise from small perturbations in the neutrino sector, as

expected from degenerate perturbation theory.

In this paper, after arguing that quasi-degenerate neutrinos are a reasonable starting

point on both phenomenological and theoretical grounds, we outline our approach for an

arbitrary number of families (assuming one right-handed neutrino per family). We then

focus in detail on a prototype two-family model with the SO(2) family symmetry which

emerges naturally in our approach. In this scenario, the charge eigenstates are given by

1√
2
(ψ ± iψ′),

where ψ and ψ′ are the current eigenstates of the two families. The degeneracy of the

light seesawed neutrinos is ultimately due to nontrivial phases in the couplings enforced

by the symmetry. With symmetry breaking in either the ∆Iw = 0 or the ∆Iw = 1/2

neutrino sector, the degeneracy is lifted and the mixing angle is hazed away from 45◦ by

the perturbation. We next discuss ways to extend the general approach to three-family

models, and conclude by discussing avenues of future exploration.

2. Theoretical framework

The case for neutrino mass degeneracy

In our theoretical approach to the flavor puzzle, the discrepancies between the quark and

lepton mixings are ultimately due to the theoretical requirement of neutrino mass degen-

eracy in the limit of an exact family symmetry. Hence, we first wish to emphasize that

quasi-degenerate neutrinos are intriguing both from a phenomenological and a theoretical

point of view. In particular, while the overall neutrino mass scale has been constrained from

cosmology [13] (and, to a lesser extent, 0νββ [14]), quasi-degenerate scenarios are consis-

tent with the data (though with a reduced parameter space). The cosmological constraints

yields the following bound on the sum of the neutrino masses [13]:

∑

i

mi
<
∼ 0.2 − 2 eV. (2.1)

The range reflects the dependence of the bound on priors and the data sets used for the

fits. Assuming a conservative estimate of the bound of 0.9 eV, the overall neutrino mass

– 3 –
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scale m0 for quasi-degenerate models is m0
<
∼ 0.3 eV. Such scenarios have the advantage

that they will be probed by neutrinoless double beta decay experiments [14] and direct

beta decay experiments [15].

From a theoretical standpoint, one may worry that if the experimental bound m0 is

not much larger than the observed mass splittings, the ratio of the mass-splittings to the

overall scale is not a reliable expansion parameter. This observation, which would naively

appear to disfavor degenerate neutrinos as a theoretical starting point, can be countered

in two ways. First, note that current bounds do not preclude scenarios in which this ratio

is a small parameter. To see this more clearly, let us parametrize the masses as follows:

m1 = m0 − |∆¯|, m2 = m0, m3 = m0 + ∆⊕, (2.2)

in which ∆⊕ can take either sign. The experimentally measured mass-squared differences

are then given by

∆m2
⊕ ≡ |m2

3 − m2
2| = (2m0 + ∆⊕)|∆⊕|

∆m2
¯ ≡ |m2

2 − m2
1| = (2m0 − |∆¯|)|∆¯|. (2.3)

The ratios of the mass-splittings to the overall mass scale take the form

∆⊕

m0
= ±

√

1 ± ∆m2
⊕

m2
0

− 1

|∆¯|
m0

= ±
√

1 − ∆m2
¯

m2
0

+ 1. (2.4)

These ratios can be large numbers if m0 ¿
√

∆m2
(exp); however, this only occurs when m0

is more than an order of magnitude below the cosmological limit. (The solutions with O(1)

ratios independently of m0 correspond to negative neutrino masses when ∆m2
(exp) → 0, and

hence effectively cover the same regime.)

In addition, note that O(1) or larger ratios are not necessarily problematic for seesaw

models based on small perturbations about degenerate structures. Since the seesaw is

a convolution of the ∆Iw = 1/2 and ∆Iw = 0 mass matrices, we will see that small

perturbations in the Majorana masses can be enhanced by the hierarchies in the Dirac mass

terms without invalidating perturbation theory. In the two-family SO(2) model discussed

later in the paper, the Dirac masses are m1,2 ∼ e±η and there is a small parameter δ ¿ 1

in the electroweak singlet sector, yet the mass-squared difference is ∼ δ cosh 2η and the

shift in the mixing angle is ∼ δ sinh 2η. Therefore, ∆⊕/m0 and ∆¯/m0 need not be small

even when there are small parameters in the seesaw matrix. This is a point that, to our

knowledge, has not been fully appreciated in the literature.

Systematics of the approach

With these ideas in mind, we now outline our theoretical approach. The main idea is

to study the symmetries which emerge upon imposing the theoretical requirement that

– 4 –
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at tree level2 the charged fermion masses are hierarchical, but the light neutrino masses

emerge naturally through the seesaw mechanism, without strong hierarchies in the right-

handed neutrino sector.3 These requirements lead to basis-dependent conditions on both

the ∆Iw = 0 and the ∆Iw = 1/2 mass matrices, which can be expressed in the basis in

which the charged currents are diagonal (the current basis) as follows:

• ∆Iw = 0 sector. The Majorana mass matrix for the right-handed neutrinos is propor-

tional to the identity matrix:

MMaj ∝ 1. (2.5)

Assuming one right-handed neutrino per family, the symmetry is O(n) (for n families).

If the number of right-handed neutrinos per family is doubled, as in E6 models [19], the

symmetry can be larger, e.g. SU(n).

• ∆Iw = 1/2 sector. Hierarchical Dirac mass eigenvalues require that the Dirac mass

matrices MD obey the following condition:

MDM†
D 6= 1. (2.6)

We require that this condition holds for the Dirac mass matrices for both the charged and

neutral fermions. Given the form of MMaj above and recalling the form of the seesaw

matrix,

Mν = MDM−1
MajMT

D, (2.7)

degenerate light neutrino masses require an additional condition4 on the neutral Dirac mass

matrix (which may also hold for the charged fermions):

(MDMT
D)(MDMT

D)† ∝ 1. (2.8)

Restricting ourselves for now to scenarios with an equal number of right-handed and left-

handed neutrinos, this condition can be reexpressed as in terms of the Hermitian combi-

nation H ≡ M†
DMD as follows:

HHT ∝ 1. (2.9)

Writing H = S + iA, in which S and A are real symmetric and antisymmetric matrices,

respectively, eq. (2.9) translates to the conditions

S2 + A2 ∝ 1; [A,S] = 0,

which also imply

[A,H] = 0.

A is a real antisymmetric matrix and thus is in the Lie algebra of O(n). Hence, H commutes

with at least one generator of O(n), requiring an SO(2) symmetry at least as part of the

2We focus here on tree-level predictions. In complete scenarios one would need to consider higher-

dimensional operators a la Froggatt-Nielsen [16]; we relegate this for future study.
3It is worth noting, however, that some hierarchy in the right-handed neutrino sector may be advanta-

geous for leptogenesis [17] (but see, however, [18]).
4This condition holds because the observable quantities are the absolute values of the mass eigenvalues,

and encompasses the special case in which MDM
T
D ∝ 1.
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family symmetry of the theory. Eq. (2.9) also has implications for the Dirac mass hierarchy;

the eigenvalues of H are either (up to an overall scale) 1 or mutually reciprocal pairs e±η.

For odd n, the middle Dirac mass eigenvalue is the geometric mean of the highest and

lowest eigenvalues.5

The above discussion did not specify the number of families. Beginning with the case

of two families for simplicity, we note that the unique solution for H is

A = cAiσ2, S = cS1, (2.10)

where cA,S are arbitrary real constants. Writing MD as a sum of group elements Ti with

complex coefficients ωi, such that

MD = ω1T1 + ω2T2, (2.11)

one solution is T1 = 1 and T2 = iσ2, with cS = ω2
1 + ω2

2 , and cA = −2Im(ω1ω
∗
2).

6 At least

one complex ωi is required, or the hierarchical structure of MD is lost (the eigenvalues

form a mutually reciprocal pair). We will present explicit two-family SO(2) models with

these properties in section 3.

For three families, a generalization to O(3) is suggested by the requirement on the

∆Iw = 0 mass terms as given in eq. (2.5). However, the requirement that H commutes

with all of the generators of O(3) implies that H must be proportional to the identity, and

hence there is no hierarchy in the Dirac mass eigenvalues. Therefore, an O(3) symmetry

in the ∆Iw = 1/2 sector does not satisfy the constraints of our approach. For another way

to see this, let us write MD once again as a sum of group elements,

MD = ω1T1 + ω2T2 + ω3T3, (2.12)

and require that MDMT
D ∝ 1. For O(n), TiT

T
i = 1, leading to the conditions

ω1ω2(T1T
T
2 + T2T

T
1 ) + ω1ω3(T1T

T
3 + T3T

T
1 ) + ω2ω3(T2T

T
3 + T3T

T
2 ) = 0. (2.13)

For O(3), these conditions cannot be satisfied by inspection. One Tk must be chosen such

that TiT
T
k = 0 for i 6= k, corresponding to an O(2) subgroup.

For n > 3, in principle it is possible to find at least one other generator of O(n) which

commutes with A and some S’s. We will continue the discussion of how to generalize the

approach to three and more families in section 4.

3. Two family models

We now explore prototype two-family models which satisfy the theoretical guidelines out-

lined above. The main assumption is the presence of an SO(2) family symmetry which

5Note that this also holds for models based on rational hierarchy [20].
6This result not only satisfies eq. (2.7), but the stronger condition that MDM

T
D ∝ 1.

– 6 –
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acts on the following linear combinations of the current eigenstates7 ψ and ψ′ (which have

the same Standard Model quantum numbers)

ψ± ≡ 1√
2
(ψ ± iψ′) , (3.1)

according to

ψ± → e±i α ψ±. (3.2)

We avoid labeling the current eigenstates numerically to avoid confusion with the mass

eigenstates ψ(m), which are related to the current eigenstates ψ(c) by

ψ(c) ≡
(

ψ

ψ′

)

= Uψ(m) ≡ U
(

ψ1

ψ2

)

. (3.3)

In the current basis, the Dirac mass matrices for fermions of charge q are

M(q) = UT
q DqVq, (3.4)

with left- and right-handed mixings Uq and Vq, respectively. Dq is the diagonal matrix of

mass eigenvalues. The seesaw matrix Mν for the light neutrinos is

Mν = UT
ν DνUν , (3.5)

and hence in our conventions, the lepton mixing matrix is UMNSP = U−1U†
ν .

SO(2) Symmetry limit

Let us begin with the neutral lepton sector. The SO(2) symmetry operates on the lepton

doublets L± and the right-handed neutrinos N±, which then enforces degenerate right-

handed neutrino masses:

2M N+ N− = M (N N + N
′
N

′
) ,

so that the Majorana mass matrix MMaj is proportional to the identity matrix. The

SO(2)-invariant neutral Dirac mass terms are

a ν+ N− + b ν− N+ ,

such that in the current basis the neutral Dirac mass matrix M(0)
D is

M(0)
D =

(

z −iw

iw z

)

, (3.6)

where z = (a + b)/2, and w = (a − b)/2. Note that this matrix is of the form

M(0)
D = z1 − iw(iσ2), (3.7)

7All fermions are taken to be left-handed. Barred fields denote the right-handed states.
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which satisfies the conditions given in Eqs. (2.7)–(2.9). It has the properties that its

eigenvalues are nondegenerate

mD
+ = |z + w| = |a|, mD

− = |z − w| = |b|, (3.8)

and the left-handed fields are maximally mixed:

U0 =
1√
2

(

1 −i

1 i

)

= R(−π/4)P , (3.9)

in which R(θ) denotes a (2 × 2) rotation by θ and P is a diagonal phase matrix:

P =

(

1 0

0 i

)

. (3.10)

However, the physical neutrino masses mν1,2
are degenerate:

Mν = M(0)
D M−1

Maj(M
(0)
D )T =

1

M

(

z2 − w2 0

0 z2 − w2

)

, (3.11)

and there is no observable mixing. The SO(2) symmetry requires both the right-handed

and the left-handed (through the seesaw) neutrino masses to be fully degenerate, even

though the Dirac masses can be hierarchical (one can even vanish if z = ±w). For real z

and w, a useful parametrization is

z = µ cosh η , w = µ sinh η ,

where µ is a mass parameter; alternatively

a = µ e η , b = µ e−η ,

suggestive of Yukawa couplings proportional to warp factors.

Turning to the charged lepton sector, it is simplest to assume that under the family

symmetry, the right-handed charged leptons transform as

e± → e±iαe±. (3.12)

SO(2) invariance yields the charged lepton Yukawa couplings

fe e+e− + he e−e+,

so that in the current basis, the charged lepton Dirac mass matrix is

M(−1)
D =

(

u −i v

i v u

)

, (3.13)

where u = (fe + he)/2 and v = (fe − he)/2. The analysis proceeds in a similar way to that

of the neutral Dirac masses. The mass eigenvalues are given by

me1
= |u + v | = | fe |, me2

= |u − v | = |he | . (3.14)

– 8 –
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If the Yukawa couplings are real we can use the same parametrization, and set

fe = µe−ηe , he = µ e ηe . (3.15)

The diagonalization produces the same type of left-handed mixing matrix, i.e.

U−1 = R(−π/4)P . (3.16)

Even though the charged lepton mass matrix is diagonalized by a maximal 45◦ rotation,

lepton mixing is unobservable because of the neutrino mass degeneracy.

If the neutrinos had only Dirac mass terms, the large angle rotation of the charged

lepton sector would be completely undone by the large angle rotation of the neutrino

sector in the symmetry limit. Symmetry breaking in the ∆Iw = 1/2 sector would yield a

nonvanishing mixing angle, but since this sector is non-degenerate, the mixing would be

proportional to the symmetry breaking parameter and therefore small, in contradiction with

the neutrino data. The seesaw mechanism is therefore crucial in leading to the possibility

of large observable mixing from small symmetry breaking effects.

Finally we note that we could have considered different family charge assignments for

the right-handed charged leptons. There is a special case where e and e′ have the same

SO(2) charge:

e → e−i α e ; e′ → e−i α e′, (3.17)

i.e., opposite of L+. The allowed charged lepton mass terms are

e+ (c e + d e′ ) .

The coupling to the other combination e− is forbidden by the symmetry, or relatively

suppressed, as it would be in the Froggatt-Nielsen approach. The charged lepton mass

matrix is now of a different form:

M(−1)
D =

1√
2

(

c d

i c i d

)

. (3.18)

The charged fermion masses are

me1
= 0 , me2

=
√

c c + d d .

The left-handed mixings are again given by

U−1 = R(−π/4)P . (3.19)

Again, athough the charged lepton mass matrix is diagonalized by a maximal 45◦ rotation,

it yields no observable mixing due to the neutrino mass degeneracy.

This charge assignment does not lead to qualitatively different physics from the previ-

ous case, except that one of the charged leptons is massless. However, it is not as natural

as the previous charge assignment if we assign the same SO(2) charges to complete grand-

unified families.

– 9 –
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We assume that the family symmetry acts in the same way on the quarks,

u± → e±iαu± , d± → e±iαd± , (3.20)

leading to the mass matrices:

(fu u+u− + huu−u+) + (fdd+d− + hdd−d+) .

The analysis proceeds exactly as before: all four quarks are massive, but since the two

Dirac matrices are diagonalized in the same way, the CKM mixing matrix is proportional

to the identity (which is not a bad starting point).

To summarize this model in the limit of exact symmetry, we see that all charged

particles are massive. Quarks and charged leptons with the same quantum numbers have

different masses while the two left-handed (and the two right-handed) neutrinos are mass

degenerate. None of these particles mix; both families are stable. Next we explore the

effects of family symmetry breaking.

Symmetry breaking

Observable lepton mixings require distinct neutrino masses: our SO(2) family symmetry

must be broken. The origin of this breaking is not known, but in principle it can occur

both in the ∆Iw = 1/2 and the ∆Iw = 0 sectors.

• ∆ Iw = 0 sector. If the flavor symmetry breaking lies entirely in the ∆ Iw = 0 mass

matrix, we can expect new effects only in the neutrino sector; all electroweak doublet

Dirac matrices remain unaffected. Since the Majorana matrix is symmetric, the symmetry-

breaking terms can occur along σ3 and/or σ1.

Let us begin by considering symmetry breaking along σ3, such that

MMaj = M

(

1 + δ 0

0 1 − δ

)

, (3.21)

where δ << 1 is the symmetry-breaking parameter. The degeneracy of the right-handed

neutrinos is broken, yielding the seesaw matrix

Mν = µ̂

(

1 − δ cosh 2η −iδ sinh 2η

−iδ sinh 2η 1 + δ cosh 2η

)

, (3.22)

with µ̂ ≡ µ2/(M(1 − δ2)). The Hermitian combination

MνM†
ν = µ̂2

(

1 − 2δ cosh 2η + δ2 cosh 4η −iδ2 sinh 4η

iδ2 sinh 4η 1 + 2δ cosh 2η + δ2 cosh 4η

)

(3.23)

has distinct eigenvalues:

m2
ν1,2

= µ̂2

(

1 + δ2 cosh 4η ∓ 2δ cosh 2η

√

1 + δ2 sinh2 2η

)

. (3.24)

The mass-squared difference is therefore of O(δ):
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∆m2 = |m2
ν2

− m2
ν1
| = 4δµ̂2 cosh 2η

√

1 + δ2 sinh2 2η . (3.25)

For small δ, the left-handed mixing matrix takes a nearly diagonal form

Uν =

(

1 − iδ
2 sinh 2η

− iδ
2 sinh 2η 1

)

+ O(δ2) , (3.26)

providing a small shift from the maximal mixing angle generated in the charged lepton

sector:

UMNSP =
1√
2

(

1 + δ
2 sinh 2η −(1 − δ

2 sinh 2η)

1 − δ
2 sinh 2η 1 + δ

2 sinh 2η

)

P + O(δ2). (3.27)

Family symmetry breaking is seen to generate an observable MNSP angle:

θ =
π

4
− δ sinh 2η

2
+ O(δ2), (3.28)

hazed away from 45◦ by a slightly broken continuous family symmetry. As anticipated,

degenerate perturbation can create a large angle; in this case the small parameter enters

as deviation from π/4.

Let us now consider symmetry breaking along σ1, for which

MMaj = M

(

1 δ

δ 1

)

, (3.29)

which leads to the seesaw mass matrix

Mν = µ̂

(

1 + iδ sinh 2η −δ cosh 2η

−δ cosh 2η 1 − iδ sinh 2η

)

. (3.30)

The diagonal elements of the Hermitian combination MνM†
ν are degenerate:

MνM†
ν = µ̂2

(

1 + δ2 cosh 4η −2δ cosh 2η(1 + iδ sinh 2η)

−2δ cosh 2η(1 − iδ sinh 2η) 1 + δ2 cosh 4η

)

, (3.31)

such that the left-handed mixings are given by

Uν = Pν
1√
2

(

1 e−iρ

−eiρ 1

)

, (3.32)

which describes a maximal mixing angle. In the above,

tan ρ = δ sinh 2η , (3.33)

and the nontrivial phase matrix is

Pν =

(

eiρ/2 0

0 e−iρ/2

)

. (3.34)

The eigenvalues are the same as for diagonal breaking, and once again
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∆m2 = |m2
ν2

− m2
ν1
| = 4δµ̂2 cosh 2η

√

1 + δ2 sinh2 2η . (3.35)

Although U−1 and Uν contain 45◦ rotations, the MNSP matrix takes the form

UMNSP =
1√
2

( √
1 + sin ρ − e−iρ

√
1 − sin ρ

eiρ
√

1 − sin ρ
√

1 + sin ρ

)

PP∗
ν + O(δ2) , (3.36)

which, for small δ, describes a rotation angle θ, slightly hazed away from 45◦:

tan θ =

√

1 − sin ρ

1 + sin ρ
≈ 1 − δ sinh 2η , (3.37)

such that as in the case of diagonal breaking,

θ =
π

4
− δ sinh 2η

2
+ O(δ2) . (3.38)

It can be shown that symmetry breaking along σ1 and σ3 are identical up to phases in the

MNSP matrix. For off-diagonal breaking, nontrivial phases prevent a cancellation of the

large mixings of the charged and neutral leptons, resulting in a nearly maximal observable

mixing angle. These phases include the observable CP-violating Majorana phase present

in the two family case.

• ∆ Iw = 1/2 sector. As previously stated, quark mixings can arise only if the family

symmetry is broken in the electroweak doublet sector. In principle such breaking can be

generated through radiative effects stemming from the breaking in the ∆Iw = 0 sector,

but for the present purposes, let us assume that symmetry breaking effects arise solely in

the ∆Iw = 1/2 sector of the theory. Such effects can occur along with the SO(2) invariant

Yukawa couplings as follows:

aν+N− + bν−N+ + µδν+N+ + µδν−N− , (3.39)

where we have assumed that the breaking occurs in the |∆F = 2| terms only, with strength

δ. In the current basis, the Dirac mass matrix now becomes

MD = µ

(

cosh η + δ −i sinh η

i sinh η cosh η − δ

)

. (3.40)

The seesaw matrix then takes the form

Mν = MDMT
D =

µ2

M

(

1 + 2δ cosh η + δ2 2iδ sinh η

2iδ sinh η 1 − 2δ cosh η + δ2

)

. (3.41)

To leading order in δ, the masses are

m2
1,2 =

µ2

M
(1 ∓ 4δ cosh η + O(δ2)) , (3.42)

and the mixing matrix is

Uν =

(

1 iδ sinh η

iδ sinh η 1

)

+ O(δ2) . (3.43)
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Hence, the mass-squared difference and the MNSP mixing angle are

∆m2 = 8δ cosh η + O(δ2) , θ =
π

4
+ δ sinh η + O(δ2) . (3.44)

For the neutrinos, the results are essentially the same as for electroweak-singlet breaking,

with the seesaw as the crucial ingredient for generating large mixing.

This can best be seen by considering the effect of this breaking in the quark sector.

We take the quark mass matrices to be

mu( e−iηu u+u− + eiηuu−u+) + muδu(u+u+ + u−u− ) , (3.45)

and

md( e−iηd d+d− + eiηdd−d+) + mdδd(d+d+ + d−d− ) . (3.46)

As a result of the perturbation (δ ¿ 1), the masses are shifted to

mu1
= mu( e−ηu − δ2

u

2 sinh ηu
) ; mu2

= mu( eηu +
δ2
u

2 sinh ηu
) , (3.47)

and similarly for the down quarks with u → d. The left-handed mixing matrices are simply

U2/3 =

(

cos θu sin θu

− sin θu cos θu

)

1√
2

(

1 i

1 −i

)

, (3.48)

with

sin θu ≈ δu

2 sinh ηu
, (3.49)

while

U−1/3 =

(

cos θd sin θd

− sin θd cos θd

)

1√
2

(

1 i

1 −i

)

, (3.50)

with

sin θd ≈ δd

2 sinh ηd
. (3.51)

It follows that the CKM rotation angle is

θ = θu − θd ≈ δu

2 sinh ηu
− δd

2 sinh ηd
. (3.52)

In the limit of strong hierarchies, ηu,d >> 1, we can write the mixing angle as

θ ≈ δu

√

mu1

mu2

− δd

√

md1

md2

. (3.53)

Unfortunately, we cannot estimate its value since δu,d are arbitrary.
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These instructive two-family models demonstrate how large angles can arise from a

slightly broken continuous family symmetry. With exact symmetry, the ∆Iw = 1/2 masses

are hierarchical and the light neutrinos are mass-degenerate after the seesaw, even with

degenerate ∆Iw = 0 masses. The symmetry breaking schemes yield large lepton mixings,

with small deviations from maximal mixing. The approach lends itself to a further embed-

ding in a grand unified picture, as the structure of the ∆Iw = 1/2 mass matrices yields

a good theoretical starting point for describing the hierarchical quark and charged lepton

masses.

We note here that the idea of obtaining large angles using U(1) family symmetries has

been previously explored in the literature; an explicit example is the two-family scenario

of [21]. However, our scenario has several important differences from this model and

most other Abelian flavor models. First, there is a clear difference in the philosophy

of our approach, which is to motivate symmetries by requiring degeneracies, rather to

use the usual flavor model-building methodology, which is to demand a family symmetry

and explore its resulting implications. This difference, though subtle, is one which does

motivate the particular two-family SO(2) scenarios presented here, which display a certain

simplicity and elegance (e.g. with simple charge assignments). The SO(2) models also have

an intriguing potential embedding in the braneworld context, given the hierarchical Yukawa

couplings required at Froggatt-Nielsen tree level.8 However, the most important difference

is the requirement of complex Dirac mass matrices, which singles out a nonstandard flavor

basis with nontrivial phases (the ψ ± iψ′ combination of fields as opposed to the standard

ψ, ψ′ basis). In most U(1) flavor models, there is no natural explanation for these phases;

they are just part of the usual O(1) coefficients which Abelian symmetries do not fix. For

this reason, these phases, which play a crucial role in our approach) are generically not

found in [21] or in other Abelian flavor models in the literature.

We next discuss possible generalizations of this mechanism to three families.

4. Extensions to three families

For three families, the naive generalization of the O(2) symmetry which naturally emerges

in the two-family case to O(3) does not allow for hierarchical Dirac mass matrices and

degenerate neutrinos along the lines of our approach, as discussed in section 2. The question

of interest, therefore, is how to generalize the elegant mechanism of the two-family model

based on SO(2) to the case of three-family mixing. The main theoretical challenge is to

reproduce (or more optimistically, explain) the intriguing pattern of mixing angles seen in

the data.

Although a full O(3) symmetry does not satisfy the requirements of our theoretical

approach, there are other ways to generalize the approach to three family models. One

way is to keep the same SO(2) symmetry and simply assign family charges to the third

family fields in a way which incorporates the two-family mixing results. Another is to

8Note that higher-order FN effects or symmetry breaking dynamics are often required to achieve hier-

archies in flavor models, but are not needed here (at least not at leading order). A complete exploration of

these effects is beyond the scope of this paper.
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seek alternate symmetries which may or may not include the family charge of the previous

section.

SO(2) Models

We begin with the SO(2) models. In this case, we simply assign SO(2) charges to the

fields of a third family, L′′, e′′, N
′′
, Q′′, u′′, and d

′′
. One possibility is that the third family

fermions are uncharged under the SO(2). If, on the other hand, the third family fields

have nonvanishing SO(2) charges, each third family field ψ′′ either has the same charge as

ψ+ or ψ− (and mix with these states in the symmetry limit), i.e.:

ψ′′ → e±iαψ′′.

In what follows, we will provide a brief summary of these two situations, relegating details

and explicit models to a more comprehensive analysis given in [22].

• Vanishing third family SO(2) charges.

When the third family is blind to the SO(2) symmetry, we will see that the path to

degeneracy is arguably the most straightforward. For the neutral leptons, it is straight-

forward to see that degenerate right-handed neutrinos arise in the limit of exact family

symmetry when N
′′

and L′′ are uncharged under the SO(2):

2MN+N− + M0N
′′
N

′′
. (4.1)

M0 = M corresponds to SO(3) invariance in the electroweak singlet sector, which could

arise from a custodial symmetry which is present in this sector but not in the electroweak

doublet sector. The neutral Dirac couplings are

µeην+N− + µe−ην−N+ + µ0ν
′′N

′′
. (4.2)

The Dirac mass eigenvalues are nonvanishing and hierarchical. In the symmetry limit, all

three neutrinos seesaw:

m1,2 =
µ2

M
, m3 =

µ2
0

M0
.

Two of the masses are naturally degenerate, but total degeneracy can be achieved depend-

ing on the parameters of the theory. The mixing angles and detailed mass splittings then

depend on the form of the symmetry breaking, which can occur in the ∆Iw = 0 and/or

∆Iw = 1/2 sectors. For example, in the right-handed neutrino sector one can have sym-

metry breaking terms which couple N
′′

to N± (i.e. ∆F = ±1 effects, in which F denotes

the family charge), or corrections to the couplings of the N± sector (∆F = 2 effects). The

main theoretical challenge in both cases is to achieve the two large mixing angles while

keeping θ13 small, which constrains the allowed symmetry breaking effects.

• Nonvanishing third family SO(2) charges.

In this case, the third family fields are charged under the SO(2) and mix with the other

families in the symmetry limit. For reasons which will become clear shortly, we parametrize

this mixing as

ψ±(ζ, φ) = cos ζψ± + sin ζeiφψ′′

ψ⊥
±(ζ, φ) = − sin ζe−iφψ± + cos ζψ′′, (4.3)
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in which ζ and φ are arbitrary angles. Since certain Standard Model fields enter more than

one type of mass term (e.g. lepton doublets enter both the charged and neutral Dirac mass

terms, and right-handed neutrinos enter both the neutral Dirac and Majorana masses),

when the third family leptons have SO(2) charges, the phenomenological discussion can

be cast into the question of which linear combinations of fields enter the different types of

mass terms.

When the same linear combinations enter two types of Yukawa couplings, we say that

they are “locked.” A familiar example of near locking is that of the quark doublets, which

enter the up-type and down-type Yukawa couplings in nearly the same way up to Cabibbo-

sized effects; i.e., the CKM matrix measures the deviation from perfect locking. For the

lepton sector, if the seesaw mechanism is operational the observed large angles of the MNSP

matrix do not preclude the possibility of locking in either the L or N sectors.

Locking can be achieved by invoking a second family phase symmetry U(1)β , under

which e.g. for the N sector (assuming for concreteness that N
′′

and N− have the same

charges under the original SO(2)α):

(N− − iN
′′
) → e−i β (N− − iN

′′
) , (N− + iN

′′
) → ei β (N− + iN

′′
),

which requires the same linear combination of N ’s to enter the ∆Iw = 0 and the ∆Iw = 1/2

couplings. Similar considerations apply to the lepton doublets.

With this in mind, note that there are two coupling schemes of interest, depending on

the relative signs of the charges of L′′ and N
′′
:

• Type A couplings. In this coupling scheme, L′′ and N
′′

have the same nonvanishing

SO(2) charge; we assume for concreteness that they mix with L− and N−, respectively.

The SO(2) invariant ∆Iw = 0 mass terms are then

MN+N−(ζ, φ). (4.4)

As only one combination of N− and N
′′

enters in the Majorana mass terms, the orthogonal

combination N
⊥
−(ζ, φ) does not participate in the seesaw. Similarly, it is straightforward

to see that without loss of generality, the SO(2) invariant neutral ∆Iw = 1/2 mass terms

are of the form

µeην+N−(ζ ′, φ′) + µe−ην−(χ, ξ)N+. (4.5)

As only one combination of N ’s and L’s enters the Dirac mass terms, ν⊥(χ, ξ) and N
⊥
(ζ, φ)

remain massless in the SO(2) symmetry limit. The physics also depends on whether there

is locking. If locking takes place in the N sector, ζ = ζ ′ and φ = φ′. Alternatively,

there could be locking in the L sector, such that the combination e−(χ′, ξ′) which enters

the charged lepton couplings (which depends on the charges of the e’s; there is always an

orthogonal combination e⊥−(χ′, ξ′) which does not enter) satisfies the conditions χ = χ′ and

ξ = ξ′.

With or without locking, the pattern of masses and mixings in the limit of exact SO(2)

symmetry is unrealistic, but this can be remedied by symmetry breaking. If symmetry

breaking occurs only in the ∆Iw = 0 sector, the absence of ν⊥ in the Yukawa couplings

implies one massless left-handed neutrino: small perturbations (minimally to give N
⊥
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a large Majorana mass) will produce the so-called inverted hierarchy. In this case, the

neutrino mass splitting is related to the haze away from maximal mixing, and applies to

solar oscillations. The haze turns out to be too small to explain the solar angle, although it

naturally yields θ13 = 0 in the symmetry limit. The atmospheric angle is not determined,

but instead can be directly traced to the absence of locking in the L sector (i.e., θ⊕ ∼ χ′−χ).

While these minimal models are not consistent with the data, more promising models can

be constructed by including ∆Iw = 1/2 symmetry breaking couplings that bring ν⊥ into

the neutrino seesaw.

• Type B couplings. In this class of models, L′′ and N
′′

have nonvanishing but opposite

SO(2) charges; e.g., let us assume for concreteness that N
′′

mixes with N− and L′′ mixes

with L+. In this case, the ∆Iw = 0 mass terms are given by eq. (4.4) as before. However,

the ∆Iw = 1/2 couplings are different:

µeη ν+(χ, ξ)N−(ζ ′, φ′) + µe−η ν− N+ + µ′ ν⊥
+(χ, ξ)N

⊥
−(ζ ′, φ′). (4.6)

In the above, µ′ is assumed to be of the order of the electroweak scale (i.e., µ′ is of O(µ),

as motivated by the logarithmic spacing of the quark and charged lepton masses), but

otherwise is a free parameter. Since both ν⊥ and N
⊥

have Yukawa couplings, the neutral

Dirac matrix has no zero eigenvalues. Furthermore, there are no massless neutrinos in the

SO(2) symmetry limit. Two of the neutrinos have seesaw suppressed masses, while the

other two neutrinos generically have electroweak scale masses, whether or not there is N

locking.

The neutrino masses and mixings are again not realistic in the symmetry limit for

Type B couplings. With ∆Iw = 0 symmetry breaking terms (again minimally to give

N
⊥

a large Majorana mass), the phenomenological implications of the resulting models

depend strongly on whether N locking occurs or not. With N locking, θ13 is naturally

zero (which generically occurred for Type A models) independently of the form of the

symmetry breaking terms in the ∆Iw = 0 sector. However, the Type B models also do not

require an inverted hierarchy scheme, and hence lead to a greater flexibility for constructing

viable models. For example, models can be constructed with minimal tuning in which the

two-family mechanism described in section 3 can be successfully applied to atmospheric

oscillations; the solar angle is then directly related to the absence of locking in the L

sector. Without N locking, there is again a greater flexibility to construct models due to

the various possibilities for the mass hierarchy. However, in this case generically θ13 6= 0,

and hence the theoretical challenge is to obtain the two large mixings while keeping θ13

small.

For both Type A and B couplings, only two right-handed neutrinos are degenerate;

i.e., MMaj 6= 1 in the symmetry limit. Hence, when the third family fields are charged

under the original SO(2) symmetry, the resulting models step outside of our theoretical

framework. For Type A models, light neutrino mass degeneracy will not occur unless there

is a conspiracy between specific symmetry breaking terms in both the ∆Iw = 0 mass terms

(to give the third right-handed neutrino a mass) and ∆Iw = 1/2 couplings (to involve

the third family in the seesaw). For Type B couplings, degeneracy of the light neutrinos

requires symmetry breaking in the ∆Iw = 0 sector and a specific tuning of the parameters.
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In summary, the three-family SO(2) schemes provide an interesting framework for

model building, but have the negative generic feature that neutrino mass degeneracy is

lost (for both light and heavy neutrinos). The lack of degeneracy is also a hallmark of

more general attempts to obtain viable three-family mixing schemes with Abelian family

symmetries. Despite this shortcoming, our approach may provide new insights or arise in

particular settings. Further exploration of these scenarios will be presented in [22].

Outlook: the path to neutrino mass degeneracy

We have shown in this paper that for two families, it is possible to obtain neutrino mass

degeneracy (via the seesaw) through a continuous family symmetry, while allowing for

hierarchical charged fermion masses. However, as discussed in section 2, generalization to

three families has proven more challenging. Let us recall the constraints imposed on the

Dirac and Majorana matrices by requiring for simplicity that the seesaw combination

MD

1

MMaj
MT

D (4.7)

is proportional to the identity matrix (a stronger condition than was previously imposed

in section 2). If we write the Dirac matrix in terms of three vectors v[i], we can think of

the inverse Majorana matrix as a metric in this three dimensional space. In its “flat” limit,

the vectors are orthogonal

vT
[i] v[j] ∼ δij . (4.8)

If the vector entries were all real, the Dirac matrix would simply be a rotation matrix, in

which case its three eigenvalues would be equal, and would not produce any hierarchy. In

the (2×2) case, we could produce a hierarchy by introducing a family SO(2), but then the

vectors had complex entries.

In the (3 × 3) case, a matrix that fulfills our requirement is

MD =





cosh η i sinh η cos θ i sinh η sin θ

−i sinh η cosh η cos θ cosh η sin θ

0 − sin θ cos θ



 . (4.9)

Its eigenvalues (1 , e η , e−η) show equal logarithmic spacing of the masses, clearly a

desirable feature for charged fermion Dirac matrices. Unfortunately, we have not found a

symmetry principle from which this naturally emerges.

A second approach is to invoke non-Abelian family symmetries. For three families, the

splitting of the neutrino masses from full degeneracy can be viewed as a small λ8 breaking

and smaller λ3 breaking, suggesting an SU(3) family symmetry, or a small breaking along

m2 and smaller breaking along m, where m is the flavor magnetic quantum number of an

SO(3) family symmetry.

We have already discussed the shortcomings of a full family SO(3) here. A family

SU(3) can naturally describe the splittings, but the path to degeneracy is again quite

different than our approach. With one right-handed neutrino per family, the Majorana

mass matrix transforms as a family sextet and can be highly hierarchical (see e.g. [23, 24]).
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However, we can augment the number of N ’s: for example, E6 requires two right-handed

neutrinos per family.

In such models, an amusing possibility is to invoke an additional phase symmetry which

allows the six neutrinos to be arranged into one triplet and one antitriplet. Invariance under

this phase symmetry forces their mass matrix to be either a family singlet or a family octet.

In the limit of exact symmetry, the three left-handed neutrinos stay massless, achieving

degeneracy. After symmetry breaking, they acquire masses through the seesaw. The light

neutrino mass splittings can then be described by perturbations along λ8 and λ3. Although

this deviates from the specific theoretical approach of this paper, it is an intriguing path

to degeneracy which may provide a fruitful ground for model building. We hope to return

to these issues elsewhere.

In summary, we have outlined a flavor model building framework in which continuous

family symmetries emerge from the theoretical requirements of hierarchical charged fermion

masses and degenerate neutrino masses for both heavy and light neutrinos. Neutrino mass

degeneracy is the starting point because large mixings can arise from small perturbations

about degenerate structures, and quark-lepton unification suggests that such small param-

eters should be expected in the lepton sector as well as in the quark sector.

The requirements of degeneracy with hierarchy naturally stem from symmetry for two

families, but for three families this does not naturally emerge and finding a symmetry-based

starting point is more difficult. However, one should keep in mind that it is a formidable

challenge to explain the three-family lepton mixing pattern together with the quarks in a

truly satisfactory way, which is why the flavor puzzle has taken such an intriguing turn in

light of the recent lepton data. Although there are challenges in extending our approach to

three families which mirror those found in general U(1) models, the approach is incremental,

and it does show what we must do to achieve naturalness in a three family context. The

work therefore provides a particular setting in which to investigate these issues which

may yield insight or naturally occur in specific theoretical contexts, and as such is one of

many possible avenues worthy of further exploration in addressing the flavor puzzle of the

Standard Model.
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